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Iterative solutions of integral equations and structural stability of fluids
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We argue that the threshold density of structural stability,r inst , of a classical fluid can be determined from
the Floquet matrix for the iterative form of the integral equation for the pair structure. A measure of the
structural stability of the fluid is provided by the Lyapunov exponent related to the perturbed dynamics. The
hypernetted-chain and Percus-Yevick equations yield, for hard spheres, a value ofr inst that is about 10%
smaller than the freezing density.@S1063-651X~98!51104-X#

PACS number~s!: 64.70.Dv, 05.45.1b, 05.70.Fh, 61.20.Gy
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A still open problem in equilibrium statistical mechani
is whether an intrinsic stability threshold of the dense flu
phase, which is expected to be close to the freezing den
can be deduced on the basis of one-phase criteria, i.e., w
out considering also the free energy of the solid. A w
known such criterion is the Hansen-Verlet ‘‘rule’’ statin
that a simple fluid freezes when the maximum of the str
ture factor is about 2.85@1#. The configurational entropy als
provides a measure of the structure which correlates w
with freezing@2#. Other ‘‘freezing criteria’’ arise quite natu
rally from the properties of solutions of integral equations
the pair distribution function of the fluid@3#, or from the
instability of the iterative solutions for such equations@4#. In
particular, Rosenfeld@4# showed that the stability limit of the
hypernetted-chain~HNC! equation, with respect to its defin
ing diagrammatic iteration loop, falls close to the freezi
density for a large variety of interaction pair potentia
However, this semiempirical result did not allow one to d
fine some functional of the given pair correlation functi
which identifies the stability property of the fluid structu
per se. In this Rapid Communication we study the relatio
between the physical stability of a statistical system and
stability of the solution of the integral equations used to
scribe its equilibrium properties. We present a stabi
analysis that is based on the application of the Floquet ma
@5# ~for the iterative form of the integral equation for the pa
structure! on arbitrary perturbations and show that t
Lyapunov exponent related to the corresponding dynam
provides ameasureof the structural stability of the fluid. We
focus on distribution-function theories@6,7# as those repre
sented by the Percus-Yevick~PY! and HNC equations, bu
our analysis can be easily extended to other theoretical m
ods, such as the density functional theory~DFT!. As a dem-
onstration, we calculate the structural stability boundary
the hard-sphere fluid through the PY, HNC, and modifi
HNC ~MHNC! equations.

Quite generally, integral equations can be written in
form:

f ~r !5A f~r !, ~1!

where f (r )PS describes the particle distribution of the sy
tem investigated,S is a set of a metric space, andA:S→S is
571063-651X/98/57~4!/3723~4!/$15.00
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an operator mappingS onto itself. Usually these equation
cannot be solved analytically and thus one resorts toiterative
methodswhich, in turn, occupy an important niche in mod
ern mathematical physics. When applying the simple ite
tive method to Eq. 1, one generates, starting from some
tial value f 0 , successive approximations to the soluti
through the mapping

f n115A fn . ~2!

If the sequence of successive approximations$ f n% converges
towards a valuef * , then f * is a fixed point for operatorA,
i.e., it is a solution of Eq.~1!: f * 5A f* . This procedure is
the starting point of other more refined iterative methods.
example, a simple but effective technique to improve co
vergence is provided by linear relaxation which gives orig
to the modified iterative method in which input and outp
aremixedat each iteration:

f n115Amixf n5aA fn1~12a! f n , ~3!

wherea is a real parameter 0,a,1, which is kept constan
or can be altered in some suitable way at each iteration.

Generally, the operatorA of Eq. ~1! describes how the
values assumed byf over the whole system should be ‘‘pro
cessed’’ in order to determinef at the point considered. In
particular, the nonlinear integral equations for fluids, whi
are obtained by supplementing the Ornstein-Zernike rela
with some appropriate closure, i.e., an independent rela
between the total@h(r )# and the direct@c(r )# correlation
functions@6#, have the form

f ~r !5K@r , f ~r !#1E K@ ur2su, f ~ ur2su!# f ~s!ds, ~4!

where f (r ) denotes one of the above mentioned correlat
functions, typicallyh(r ), andK is a kernel that depends o
the closure adopted. Equation~4! definesf (r ), i.e., the value
of the function f at an arbitrary point of the system wit
spatial coordinater , in terms of the values off at all of the
points of the system. Within the approximation inherent
the closure, this mathematical procedure appears as the c
terpart of a physical process since every point of the sys
contributes, via mutual interactions, to determine the va
R3723 © 1998 The American Physical Society
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of f at a given point. As suggested by the fixed-point form
Eq. ~1!, at equilibrium there is a ‘‘detailed balance’’ betwee
the local value off and that resulting from the ‘‘process
ing,’’ represented mathematically by operatorA, of the val-
ues thatf assumes over the entire system. We assert that
condition is tantamount to a definition ofstructural equilib-
rium for the system investigated. In order to ascertain
nature of this equilibrium state let us suppose to perturb
equilibrium correlation functionf * (r ) by an arbitrary pertur-
bation d(r ). The nonequilibrium distributionf (r )5 f * (r )
1d(r ), is then ‘‘processed’’ by the operatorA, and to first
order in the perturbation it yieldsMd(r ), where the matrix
M5 (]A/] f ) u f* is the Floquet matrix acting on the pertu
bation vector~in numerical applicationsr is represented by a
grid of N points, the functionf is an N vector andA is an
f -dependentN3N matrix!. Md may be considered, in turn
as a perturbation which, when processed by the system, g
origin to a new perturbationMMd, and so on. The succes
sive processings thus generate afictitious dynamicsconsist-
ing of repeated applications of the Floquet matrix to the i
tial perturbation. The nature of thestructural equilibriumof
the system can be associated with this dynamics and with
resulting fate of the perturbation. It follows that the prope
ties of operatorA, on which the fictitious dynamics depend
are crucial as far as the structural stability of the fluid
concerned.

Generally, the operatorA depends on one or more param
eters, and when these parameters are changed, one can
from regions in which the numerical procedure adopted
solve Eq. ~1! does converge and the method isstable, to
regions where the procedure does not converge and
method becomesunstable. The stability threshold may de
pend on the particular iterative method employed, a fea
which surely contributed to cast heavy shadows on the ph
cal meaning of the numerical instability. In order to clari
the relationship between structural and numerical stabi
we resort to a mathematical result which is fundamental
our purposes. Banach’s fixed-point theorem@8# states that,
given an operatorA:S→S, whereS is a closed nonempty se
in a complete metric space with distanced, if A is k con-
tractive@i.e., if d(Ax,Ay)<kd(x,y) for all x,yPS and for a
fixed k with 0<k,1], thenA has exactly one fixed point in
S, i.e., Eq.~1! has one single solution, and the sequence
successive approximations defined through Eq.~2!, which
amounts to the simple iterative method, converges to
solution f * for an arbitrary choice of the initial pointf 0 in S.
Under these conditions the above defined fictitious dyna
ics, and thus the structural equilibrium of the fluid, is stab
On the other hand, ifA is nonexpansive~i.e., the above de-
fined condition holds fork51! the simple iterative method
needs not converge while, according to a suitable gene
zation of Banach theorem~see@8#!, the sequence of modifie
successive approximations constructed through Eq.~3! does
converge to the fixed point ofA.

Let us now interpret, in the light of the preceding cons
erations, the behavior of the numerical solution of the in
gral equations for the fluid structure in the high-density
gion. For simplicity, we suppose thatA depends on some
parameterr ~e.g., the particle number density!. It is a well-
known feature that successive approximations, i.e.,
simple iterative method, converge to the fixed pointf *
f
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~which in principle depends onr! only up to a valuer inst .
As follows from the Banach fixed-point theorem this impli
that for r.r inst operatorA is no longerk contractive. Usu-
ally, one is interested in the solution of the integral equat
rather than in the stability of the simple iterative metho
Indeed, when this becomes unstable, the current attitude
reduce, as far as possible, the region where the nume
solution is unstable through the adoption of other numer
techniques. For example, if atr inst operatorA changes from
k contractive to nonexpansive the adoption of the modifi
iterative method Eq.~3! suffices to find the solutionf * of
Eq. ~1! beyond r inst ~though more refined methods ma
achieve convergence more rapidly!. The importance of the
stability threshold of the simple iterative method resides th
in that it signals a fundamental change in the properties
operatorA which is related, as specified before, to the stru
tural stability of the fluid. This indication is lost when mor
refined methods are adopted.

It may be useful to observe that, though the mappin
defined in Eqs.~2! and ~3! have the same fixed point equa
tion and thus the same fixed pointf * , the range of stability
of f * is different for the two operators. From the function
analysis results recalled above it follows that ifA is nonex-
pansive thenAmix is k contractive~while, if A is k contrac-
tive, Amix is a fortiori k contractive!. Thus, if f * is a stable
fixed point forA, then it is also a stable fixed point forAmix ,
but the opposite does not hold, namely,f * may be a stable
fixed point forAmix though being an unstable fixed point fo
A. In the last casef * satisfies the equilibrium condition, bu
the equilibrium state described isstructurally unstablein the
sense previously specified. Though we have considere
detail only the modified iterative method, a similar effect c
be expected when ‘‘forcing’’ convergence through more
fined techniques. The preceding point may be efficaciou
illustrated with a simple example. Let us consider the w
known one-dimensional logistic map@9#, xn115F(xn)
5mxn(12xn), and the following ‘‘modified’’ logistic map,
xn115aF(xn)1(12a)xn , where 0,a,1. The logistic
map follows a period-doubling route to chaos. Its attract
set evolves withm as follows: for 0,m,1 the map has a
point attractor,x150, which becomes unstable form51;
here the fixed pointx25m21/m becomes stable and remain
so until m53 where a bifurcation gives origin to a period
attractor with period two. Through a series of success
pitchforklike bifurcations a chaotic attractor eventually a
pears. The ‘‘modified’’ logistic map shows a similar beha
ior but bifurcations are shifted towards higher values ofm.
Upon focusing our attention on the point attractors, we n
that the two maps have the same fixed-point equation, a
consequently, the same fixed pointsx1 andx2 . However, the
mixing procedure alters their range of stability: in particula
the stability of x2 is extended beyondm53 up to m5m1
5(21a)/a, where the first bifurcation takes place.

A particularly well known application of integral equatio
theories in the statistical mechanics of fluids is theanalytic
solution of the PY equation for the hard-sphere fluid@6#. It is
a well-established result@6# that the three-dimensional hard
sphere fluid undergoes a freezing transition forh f.0.49,
whereh5 (p/6) rs3 is the packing fraction in terms of th
hard-sphere diameters. On the other hand, the analytica
solution of the PY equation is well-behaved up toh51,
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where the pressure as calculated via both the virial and c
pressibility expressions diverges, and apparently shows
trace of the crystallization of the fluid. On this basis it mig
have been stated that the PY equation is unable to fur
any hint on the phase behavior of the hard-sphere fl
However, one should consider that the analytical appro
gives no information on the dynamical properties of the o
eratorA relative to the PY equation, unless these are exp
itly studied, e.g., through a linear stability analysis. For
volved integral equations this may be hardly feasible
analytical means. On the other hand, the numerical itera
approach furnishes not only the solution of the equation~ob-
viously within numerical accuracy! but, when implemented
through the simple iterative method, reveals itself as an in
dicator of the structural stability of the system~within the
accuracy of the closure adopted!. In the case considered her
the simple iterative method has an upper stability thresh
at h inst.0.43. Calculations were performed using a grid
N51024 points with spacing of 0.02s; however,h inst is
rather insensitive to the mesh used and remains essen
the same even for much less accurate calculations
coarser grids. In analogy with the logistic map case con
ered above, when solving the PY equation through the m
fied iterative method, the stability threshold is shifted
wards higher values ofh, the smaller the parametera the
larger the shift observed. We note that the stability thresh
of the simple iterative method is an indicator of the transit
of the system investigated from a regime where it is str
turally stable to a regime where it isstructurally unstable,
while at the freezing point the fluid becomesthermodynami-
cally unstable ~or metastable! with respect to the solid
Hence,h inst andh f are expected to be close but need not
identical.

It is interesting to compare the PY estimate ofh inst with
that provided, for the hard-sphere fluid, by other closures~for
which, however, only the numerical solution exists!. We
considered the HNC equation and two MHNC approac
that employ approximate functional expressions for
‘‘bridge function’’ @10# @representing the sum of all eleme
tary diagrams,E(r )], specifically those proposed by Verle
(V) @11# and by Martynov and Sarkisov~MS! @12#. We ob-
tained h inst50.43, 0.44, 0.39, 0.52 for the PY, HNC, V
and MS approximations, respectively. The HNC estimate
h inst is close to that provided by the PY equation, while t
two MHNC schemes give quite different results. Since, as
as thermodynamical and structural quantities are concer
the PY equation is, for hard spheres, more accurate than
HNC equation, while both MHNC approaches lead to i
provements with respect to PY~and HNC! results, the above
values ofh inst do not reflect in general the relative accura
of the different closures for what concerns thermodynam
and structural quantities. In fact, these properties are rel
to E(r ), whereas the stability properties of the numeric
solution depend on]A/] f u f* and, consequently, on the func
tional derivative]E(r )/] f (r ). In approximate theories, a
expression forE(r ) may lead to accurate structural and the
modynamical quantities while not improving, or even wo
ening, the accuracy of]E(r )/] f (r ). It might be expected
that the structural stability thresholdr inst ~as defined above!
for the MHNC integral equation, with the exact~but un-
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known! E(r ), is close to the freezing pointr f for the fluid.
This can provide a constraint for approximations onE(r ).

Having substantiated the equivalence between the st
tural stability of the fluid and the numerical stability of Eq
~2!, one might study how the last evolves with the dens
~and eventually is lost! through the standard method bas
on the analysis of the eigenvalues of the Floquet matrix.
applied this procedure for different closures~HNC, PY! and
potentials~inverse-power potentials, Yukawa potential, et!
and found, in agreement with@4#, that even for densities
much smaller than the stability thresholdr inst some eigen-
values of the Floquet matrix can assume values greater
1 @13#. This can be explained by observing that when t
matrix is not normal then in general one cannot find a ort
normal set of vectors, or even a pair of orthogonal eigenv
tors. In fact, theN nonorthonormal eigenvectors do not a
ways span the N-dimensional vector space and
consequently, the eigenvectors do not always form a co
plete set. As a result, the existence of eigenvalues gre
than 1 does not necessarily imply a divergence of the per
bation upon repeated application of the matrix. Since
analysis of the eigenvalues of the Floquet matrix is not u
ful to predict the result of a repeated application of the m
trix, this deserves a direct investigation. Thus, starting fr
an arbitrary ~we tried a wide variety of functional forms!
initial perturbationd0(r ) of the fixed pointf * (r ), repeated
applications ofM generate the succession$dn%, wheredn
5Mdn21 . This succession either converges to zero or
verges, depending on whether the structural equilibrium
the fluid is stable~i.e., for r,r inst) or unstable~i.e., for r
.r inst), respectively. We note that the Floquet matrixM is
a functional of the solution of Eq.~1!, f * , and thus can be
calculated also forr.r inst by employing numerical method
converging beyondr inst . In particular, within the PY ap-
proximation for hard spheresM can be obtained from the
corresponding analytic solution for anyh,1. As expected,
the stability boundary thus identified agrees very well~to
within numerical uncertainty! with the stability limit ob-
tained from the dynamic behavior of the simple iterati
method. The procedure based on the Floquet matrix
however, the obvious advantage that Eq.~1! can be solved
using a numerical method that is both faster and less se
tive to the initial input as compared to the simple iterati
method. Moreover, it makes possible to define, as sho
below, ameasureof the structural stability of the system.

The effect of repeated applications of the Floquet ma
on the initial perturbationd0 can be represented as follows

idni
id0i 5 )

i 50

n21

Si , ~5!

where

Si5
iMd i~r !i

id i~r !i , ~6!

and i f (r )i5A@( i 51
N f 2(r i)# is the norm of a functionf de-

fined over a mesh ofN points. Assuming that the norm of th
perturbation depends exponentially~as long as it remains
infinitesimal! on the number of iterations, i.e.,idn(r )i
5id0(r )i2ln, wherel is the Lyapunov exponent related t
the perturbation dynamics, one can write the average ex
nential stretching of initially nearby points as
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l5 limn→`

1

n
log2S )

i 50

n21

Si D . ~7!

The actual number of iterations after whichl reaches its
saturation value depends on the density, ranging from
tens at low density to few hundreds near the instability po
Though in principle the Lyapunov exponent depends on
initial perturbation d0(r ), we found that wildly different
forms of the initial perturbation lead to essentially identic
values ofl. Consequently this quantity can provide a me
sure of the stability of the solution, and thus of the structu
stability of the fluid.

We calculatedl for the hard-sphere fluid within the PY
and HNC approximations. As shown in Fig. 1, as the den
increasesl becomes less and less negative, thus signalin

FIG. 1. The Lyapunov exponentl plotted as a function of the
packing fraction for the hard-sphere fluid, as estimated through
PY ~solid circles! and HNC ~open circles! equations. The inse
shows a magnification of the sharp change of behavior in the re
aroundhc .
ys

si-
I.
w
t.
e

l
-
l

y
a

less efficacious damping of the perturbation, i.e., a decre
of the stability of the fluid. The slope of the curve, initiall
quite steep, decreases rapidly withh so that the valuel
50, corresponding to the loss of stability of the solutio
might appear attainable only for very large values ofh.
However, at a densityhc , slightly smaller thanh inst , the
curve exhibits a sudden increase of its steepness and, c
spondingly,l goes rapidly to zero on approachingh inst .
Note, on the qualitative side, that this behavior does not
pend on the closure adopted. It thus appears evident tha
fluid undergoes,before the loss of structural stability, a
rather well-defined ‘‘transition’’ to a regime of rapidly dete
riorating stability. The phenomenon is not a gradual one
fact, as can be better appreciated from the inset in Fig. 1,
distinct branches, both linear but with different slope, mee
hc . This feature is independent of the density of poin
which suggests that the derivativedl/dh is discontinuous at
hc , at least within the limits of numerical accuracy of th
calculation. From a dynamical point of view this behavi
reflects the approaching to the incipient instability and
growing influence of a new attracting set~no longer a point
attractor!. In principle this phenomenon may be reflected
physical properties other than those concerning the struct
stability of the fluid. While equilibrium properties do no
exhibit any anomalous behavior in correspondence with
region, it is well known that simulation results show a se
sible variation of dynamical properties at high densitie
crystallization is preceded by a rapid, though gradual, fall
the diffusion coefficient and by a much sharper rise of
shear viscosity. The nature of the structural stability lim
and its relation to freezing deserves further study which m
lead to a physical definition of a stable fluid structure. Deta
of the present analysis, and applications to various poten
and integral equations, as well as an extension to the in
mediate density region in the presence of an attractive c
ponent in the potential, will be presented elsewhere@13#.
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